摘要

传统核主元分析法(KPCA)是一种广泛应用的非线性化工过程故障检测方法,但是其未充分利用过程数据的概率分布信息,往往难以有效检测过程中的微小故障。针对传统KPCA方法的局限性,本文提出了一种基于加权概率相关核主元分析(WPRKPCA)的非线性化工过程微小故障检测方法。与传统KPCA方法监控核成分的变化不同,该方法利用Kullback Leibler散度(KLD)度量核成分的概率分布变化,进而建立基于KLD成分的统计监控模型,以充分挖掘过程数据所包含的概率信息。进一步考虑到不同KLD成分承载故障信息的差异性,该方法设计了一种基于核密度估计的指数加权策略,根据KLD成分描述故障信息程度的差异分配相应的权值,以加强监控模型对微小故障检测的灵敏性。在一个数值例子和连续搅拌反应器(CSTR)系统上的仿真结果表明,本文所提方法具有比传统KPCA方法更好的微小故障检测性能。

全文