摘要
对高层、超高层建筑物进行实时,高精度的变形监测对提前预防安全隐患,保证人民生命财产安全具有重要意义。建筑物变形作为一种典型的随机性和微弱性过程,噪声等误差的存在会影响从中提取有用的变形信息。针对该问题,提出一种改进粒子群(Particle Swarm Optimization,PSO)算法优化支持向量机(Support Vector Machine,SVM)的噪声稳健建筑物变形监测方法,利用改进PSO算法的全局搜索能力对SVM的核参数进行优化,提升预测精度的同时增强算法的噪声稳健性。基于实测数据的试验结果表明,相对于传统交叉验证SVM和小波方法,所提方法可以获得更高的变形预测精度,并且在低信噪比条件下优势更加明显。
- 单位