摘要
在基于神经网络的图表示算法中,当节点属性维度过高、图的规模过大时,从内存到显存的数据传输会成为训练性能的瓶颈。针对这类问题,该方法将图划分算法应用于图表示学习中,降低了内存访问的I/O开销。该方法根据图节点的度数,将图划分成若干个块,使用显存缓存池存储若干个特征矩阵块。每一轮训练,使用缓存池中的特征矩阵块,以此来减少内存到显存的数据拷贝。针对这一思想,该方法使用基于图划分的抽样算法,设计显存的缓存池来降低内存的访问,运用多级负采样算法,降低训练中负样本采样的时间复杂度。在多个数据集上,与现有方法对比发现,该方法的下游机器学习准确率与原算法基本一致,训练效率可以提高2~7倍。实验结果表明,基于图...
- 单位