基于组合预测方法的研究思路,在LSTM神经网络的基础上,引入强化学习思想,采用简化的Inception网络结构,构造成隐藏状态矩阵,实现LSTM网络的改进与优化,并据此构建短期电力负荷预测模型。实验结果表明,与DBN、RBF等网络模型相比,基于强化学习的改进LSTM网络模型可更好地捕捉依赖信息,具有更高的短期负荷预测准确性。