摘要

为了提高集装箱港口服务效率,减少船舶服务的拖期费用,针对港口硬件(泊位、拖轮、岸桥)既定条件下的拖轮-泊位联合调度问题,新建了以最小化总体船舶在港时间和总拖期时间为目标的数学模型,设计了一种混合算法进行求解。首先,分析确定了将量子遗传算法(QGA)和禁忌搜索(TS)算法进行串行混合的策略;然后,依据该联合调度问题特点,在解决算法实施中的关键技术问题(染色体结构设计和测量、遗传操作、种群更新等)的同时,采用了动态量子旋转门更新机制;最后,用生产实例验证了算法的可行性及有效性。算法实验结果表明,与人工调度结果相比,混合算法的总体船舶在港时间和总拖期时间分别减少了24%和42. 7%;与遗传算法结果相比,分别减少了10. 9%和22. 5%。所提模型及算法不仅能为港口船舶的入泊、离泊和装卸作业环节提供优化作业方案,而且能增强港口竞争力。

全文