摘要
实时数据流中标记样本所占比例较小,并且存在大量的噪声数据和冗余数据,导致数据流的实时分类准确率较低。针对这种情况,提出基于拉普拉斯回归主动学习的大数据流分类算法。为分类器设计相对支持度差异函数作为分类的决策方法,通过阈值判断当前数据流的标记样本量。设计基于约束规则的半监督主动学习算法,从无标记样本集选择信息量最丰富的样本。采用拉普拉斯正则最小二乘回归模型作为半监督学习的回归模型,迭代地扩展数据流的标记样本量。仿真结果表明,该算法有效地提高了数据流的分类准确率,并且满足实时性的需求。
-
单位电子信息工程学院; 河南工业职业技术学院