该文研究了图的两种特殊性质,这两种特殊性质均具有稳定性.首先对原图进行了闭包运算并构造了原图的闭包,将原图是否具有某性质转化到了闭包补图中;其次对闭包补图的结构进行了合理的分类讨论;最后找到了在一定条件下当补图的无符号拉普拉斯谱半径不大于2k时,原图的独立数不超过k,或在一定条件下当补图的无符号拉普拉斯谱半径不大于n-2时,原图是哈密尔顿-连通的.