摘要
多尺度量子谐振子优化算法(MQHOA)是近年提出的一种基于量子物理的自然计算方法.本文针对该算法未能充分利用迭代中历史信息的问题,提出一种历史数据驱动的多尺度量子谐振子优化算法(HI-MQHOA).在两步迭代过程中,HI-MQHOA引入历史数据作为驱动,形成下一代个体分布的参数及动态调整算法尺度.形成的下一代个体分布参数可以有效指导算法的开发和探索,动态尺度调整可以避免早熟停滞.通过多个经典测试函数验证,该算法在解的质量、准确率和伸缩性方面优于MQHOA和改进的MQHOA,以及其他自然计算算法.
- 单位