摘要
为提升变电站巡检机器人的导航避障能力,将深度学习技术应用于变电站场景识别中,提出了一种基于深度卷积神经网络的避障方法。该方法联合图像分类和语义分割两个分支来共同辅助机器人导航避障,分类分支通过获取图像全局信息,保证机器人正确行驶方向;而语义分割支路则根据图像局部信息以及机器人前方目标类别,指导机器人准确避障。实验结果表明,避障方法可以高效地对图像进行分类和分割,同时,在实际变电站环境中,该方法也能为巡检机器人提供有效的避障信息,实现实时自主避障。
- 单位
为提升变电站巡检机器人的导航避障能力,将深度学习技术应用于变电站场景识别中,提出了一种基于深度卷积神经网络的避障方法。该方法联合图像分类和语义分割两个分支来共同辅助机器人导航避障,分类分支通过获取图像全局信息,保证机器人正确行驶方向;而语义分割支路则根据图像局部信息以及机器人前方目标类别,指导机器人准确避障。实验结果表明,避障方法可以高效地对图像进行分类和分割,同时,在实际变电站环境中,该方法也能为巡检机器人提供有效的避障信息,实现实时自主避障。