摘要

针对柔性作业车间动态调度问题构建以平均延期惩罚、能耗、偏差度为目标的动态调度优化模型,提出一种基于深度Q学习神经网络的量子遗传算法。首先搭建基于动态事件扰动和周期性重调度的学习环境,利用深度Q学习神经网络算法,建立环境-行为评价神经网络模型作为优化模型的适应度函数。然后利用改进的量子遗传算法求解动态调度优化模型。该算法设计了基于工序编码和设备编码的多层编码解码方案;制定了基于适应度的动态调整旋转角策略,提高了种群的收敛速度;结合基于Tent映射的混沌搜索算法,以跳出局部最优解。最后通过测试算例验证了环境-行为评价神经网络模型的鲁棒性和对环境的适应性,以及优化算法的有效性。