摘要
网络表示方法旨在将每个节点映射到低维向量空间,并保留节点在网络中的结构关系。有向网络的环中节点相互可达,破坏了非对称传递性,影响了模型对网络整体结构信息的学习。为削弱有向网络的环在表示学习中的影响,增强模型对全局结构信息的感知,文中提出了一种针对有向网络表示学习的优化方法。该方法借助TrueSkill方法获取节点的层级信息,将该信息转化为边权重并引入表示学习过程。文中将此方法应用到已有的多种有向网络表示学习方法中,多个有向网络数据集上的链接预测和节点分类任务的实验结果表明,所提方法的性能相比原有方法得到了明显提升。
- 单位