摘要

太平猴魁茶因其特有的"喉韵"深受广大消费者喜爱,不同产地太平猴魁茶市场价格相差较大,如何实现产地精准鉴别是目前促进绿茶产业发展的关键因素。依赖于人工经验的感官评审方法主观性强、稳定性差,无法应用于实际生产检测过程。作为目前主要的检测分析方法,化学分析方法周期长、检测成本高,而且目前没有用于茶叶产地鉴别的统一标准。近红外光谱(NIR)作为一种无损检测分析方法,具有快速、非破坏性、无污染等特点,但是不同产地太平猴魁茶主要内含成分及其含量基本相同,不同产地样本光谱特征峰分布相似,导致常规分析方法无法有效选择特征变量。卷积神经网络(CNN)作为经典深度学习网络模型之一,具有强特征提取和模型表达能力。采用太平猴魁茶产地光谱特征分析,利用一维卷积神经网络模型(1-D CNN)提取太平猴魁茶NIR特征,提出一种基于1-D CNN和NIR的太平猴魁茶产地鉴别分析方法。试验以6个不同产地共120个样本为研究对象,分析10 000~4 000 cm-1范围内的光谱信息;将样本随机划分为训练集(84,占70%)和测试集(36,占30%),分别讨论不同间隔采样、网络结构、卷积核大小及激活函数对产地鉴别结果的影响,并引入Dropout方法对比分析模型过拟合现象;最终建立一个具有9层结构的1-D CNN模型。蒙特卡罗试验结果表明,相比于基于原始光谱数据(40.57%, 7.06)和PCA方法(31.93%, 6.96)的太平猴魁茶产地预测模型准确率和标准差,基于1-D CNN的太平猴魁茶产地鉴别模型预测精度和稳定性更高,其测试集预测准确率平均值和标准差分别为97.73%和3.47。因此,1-D CNN可有效提取太平猴魁茶不同产地NIR特征,提高太平猴魁茶产地鉴别精度,为太平猴魁茶精准产地鉴别及溯源分析提供参考。