摘要
异常检测是计算机视觉的一个经典问题.针对异常样本稀少在真实场景中异常很难被捕捉,且标签难以获取,提出一种仅用正常样本进行训练的端到端异常检测模型.首先,通过自动编码器对输入图像进行编码,得到它的低维特征;然后,用一个自回归概率密度估计器对低维特征的概率分布进行正则约束,解码器再将其恢复至原始输入大小;最后,使用一个分类器来判断生成图片的真假.编解码器之间使用了跳线连接,能够最大限度地提高该模型对正常样本的记忆能力.本文在CIFAR-10和UCSD Ped2数据集上进行了实验,测试结果显示,CIFAR-10总共10个类别的平均曲线下面积(AUC)达到73.5%,UCSD Ped2的平均曲线下面积(AUC)达到95.7%.结果证明,该模型能够明显提高异常检测的效果.
- 单位