摘要

本发明公开了一种基于卷积神经网络的泳姿识别方法,包括:将九轴传感器安装在手腕处,记录人体游泳时手腕部的加速度和角速度信号;取出一个单位长度的待测信号进行识别分割;对分割得到的信号进行预处理,设计卷积神经网络模型结构;对卷积神经网络模型参数进行训练,将预处理后的信号输入到训练后的卷积神经网络模型中进行分类,确定信号分类结果;根据信号分类结果,确定待测信号中所要取出的单位长度的信号片段的区间,重复上述步骤。本发明通过对卷积神经网络结构进行修改,降低了其对计算资源的需求,使其能在智能可穿戴设备上对泳姿进行高效、准确的识别。