摘要
为提高风电场输出功率的预测精度,提出一种采用相似时段选取原则和基于主成分分析(principal component analysis,PCA)与多层自编码极限学习机(multi-layer auto encoder extreme learning machine,ML-AE-ELM)组合算法(PCA-ELM)的预测模型。通过关联度分析明确待测时段的相似时段范围,结合天气数据、机组状态和历史功率构建训练和测试样本,利用预测算法完成样本的训练和测试,得到输出功率预测结果并验证。实验结果表明:与常见的算法模型相比,该预测模型在不同装机容量和不同工作状态的风电场中均具有较高的预测精度,表现出良好的预测稳定性和泛化能力。
-
单位西北大学; 经济管理学院; 河南工业职业技术学院