摘要
近年来可见-近红外光谱技术在农业污染监测中应用越来越广泛,但在果树的重金属污染研究中应用较少。本文以纽荷尔脐橙(Citrus sinensis[L.]Osbeck cv.Newhall)为研究对象,采用盆栽方法,通过添加镉(Cd)形成不同污染程度的土壤,然后定期监测叶片中Cd含量及其光谱,分别建立了基于光谱指数的线性回归预测模型,以及基于偏最小二乘回归(PLSR)的Cd含量高光谱预测模型。结果表明:Cd更容易向新叶迁移和聚集,在高Cd污染的土壤中这种现象更加明显;新叶光谱在700730nm之间反射率升高,发生红边蓝移现象,老叶光谱没有显著变化;基于光谱指数建立的线性回归模型的R2达到0.8左右,而利用PLSR方法建立的预测模型精度普遍高于线性回归模型,其R2达到0.9左右,并且标准归一化(SNV)的光谱预处理方法可以显著提高PLSR模型的预测精度。研究显示,可见-近红外光谱技术在脐橙重金属污染监测上有很好的潜力。
- 单位