摘要

针对复杂工况下高速动车组轴箱轴承故障难以准确诊断的问题,提出了一种ShuffleSE单元设计方法,并基于模块化思想建立了一种新的轻量化网络Shuffle-SENet用于高速列车轴箱轴承故障诊断。Shuffle-SE单元以ShuffleNet V2单元为基础,在保留网络轻量化的同时,对网络结构进行了局部优化,并进一步嵌入了Squeeze-and-excitation(SE)结构。所构建的轻量化网络模型在保证运算高效的同时,故障诊断精度明显提升。此外,本文对Shuffle-SE单元的数量及SE结构中降维系数对网络模型性能的影响进行了深入分析。实验分析结果表明:本文网络模型可有效用于多种复杂工况下高铁轴箱轴承故障诊断,相比MobileNet V2、ShuffleNet V1/V2、ResNets等目前较为流行的神经网络模型,本文模型在运行效率和故障诊断精度两方面均有较好表现。本文研究为深度学习技术走向工程实际应用,克服对计算机硬件配置较高的限制提供了一种新的解决方法。

全文