摘要
目前,客户关系管理的一项重要内容为电子的商务个性化推荐。协同过滤算法是运用范围最广的推荐技术,但传统协同过滤推荐算法不适合多兴趣用户的推荐,则在此基础上通过协同过滤、项目协同过滤算法等,计算目标项目相似集,并在目标相似集中运用协同过滤算法处理。基于此,剖析用户多兴趣下的个性化推荐算法,并结合用户多需求的特点,总结个性推荐算法的优势,旨在通过完善算法推荐,实现个性化推荐算法与传统算法的融合,提高用户的体验满意度,充分展现个性化推荐算法的应用价值。
- 单位
目前,客户关系管理的一项重要内容为电子的商务个性化推荐。协同过滤算法是运用范围最广的推荐技术,但传统协同过滤推荐算法不适合多兴趣用户的推荐,则在此基础上通过协同过滤、项目协同过滤算法等,计算目标项目相似集,并在目标相似集中运用协同过滤算法处理。基于此,剖析用户多兴趣下的个性化推荐算法,并结合用户多需求的特点,总结个性推荐算法的优势,旨在通过完善算法推荐,实现个性化推荐算法与传统算法的融合,提高用户的体验满意度,充分展现个性化推荐算法的应用价值。