摘要
目的采用分子指纹和分子对接法筛选BRD4抑制剂。方法采用1181个IC50值跨度从0.7~8.354×106nmol·L-1的BRD4抑制剂小分子作为训练集和测试集构建机器学习法的二元分类模型,利用ROC曲线,Sensitivity、Specificity和Accuracy值对二元分类模型进行评估;然后联合分子对接法筛选天然化合物库。结果用机器学习法构建的二元分类模型都较好适用于进一步筛选化合物库,文中运用支持向量SVM筛选天然产物化合物库,根据机器学习法得到的化合物在分子对接中与蛋白具有相似的相互作用模式。结论机器学习法所构建的二元分类模型可行度较高、预测能力较强,为寻找新型小分子BRD4抑制剂奠定了基础。
-
单位四川大学华西医院; 生物治疗国家重点实验室; 云南省妇幼保健院