摘要
提出了一种基于à Trous小波变换与多核SVM的电力短期负荷预测方法。应用à Trous小波变换将负荷时间序列分解为近似分量和细节分量,并选择不同尺度核的SVM对分解后的数据进行预测,然后将预测后的数据进行合成,得到多尺度负荷预测结果。运用该方法对实际负荷数据进行了1步预测和2步预测,数据实验表明,最大的RMSE误差为1.82,与标准BP神经网络相比,文中所提方法具有更高的预测精度和更好的泛化能力。
-
单位广东电网公司佛山供电局