摘要
传统的基于拉普拉斯图的半监督特征选择算法处理高维、少标签样本时,缺乏外推能力且对数据异常值的鲁棒性差.基于此,提出一种基于Hessian正则的自适应损失半监督稀疏特征选择算法.首先,为提升线性映射能力,利用Hessian正则保留数据的局部流形结构;其次,为增强模型对具有较小或者较大损失数据的鲁棒性,引入自适应损失函数,通过调节自适应损失参数确定最小损失;再次,采用l2,p范数稀疏投影矩阵,提升特征的区分度,增加模型适应度;最后,采用递归迭代优化求解目标函数.仿真实验验证了所提方法的有效性和优越性.
- 单位