针对非局部均值去噪算法在图像去噪过程中参数选择等问题上存在的不足,给出一种基于神经网络的非局部均值去噪算法。该方法利用非局部均值去噪算法中的全局性联系,首先提取图像的非局部数据作为神经网络的输入,然后利用利用图像的非局部数据训练神经网络,最后用训练好的神经网络对噪声图像进行滤波。该算法能够减少传统非局部均值去噪算法的参数选择过程,降低了算法的复杂度。实验结果表明,与传统的非局部均值去噪算法相比,本文算法在视觉质量实验、峰值信噪比实验以及结构相似性实验上均有更好的结果。