摘要
为了快速而准确地统计视频监测区域内的水稻穗数,提出了一种基于改进Faster R-CNN的稻穗检测方法。针对稻穗目标较小的问题,在InceptionResNet-v2的基础上引入空洞卷积进行优化;对于不同生长期稻穗差别大的问题,设计了针对标注框尺度的K-means聚类,为候选区域生成网络提供先验知识,从而提高了检测精度。鉴于小尺寸稻穗目标的特殊性,用ROIAlign替代ROIPooling,提高了感兴趣区域的提取精度。试验测试时,根据水稻不同发育期稻穗的表型特征差异自制了3类数据集,并选取最佳聚类数为10。模型对比试验表明,本文方法的稻穗检测平均精度均值达到80.3%,较Faster R-CNN模型提升了2.4个百分点,且比SSD和YOLO系列模型有较大幅度的提升。
- 单位