摘要
树冠信息的遥感提取能有效辅助森林参数反演、林分长势监测、树种识别等森林调查活动。随着遥感信息自动化提取的需求不断加强,本文基于高空间分辨率遥感数据,以滁州市皇甫山林场为研究区域,设计了一种结合Gabor小波和形态学的树冠提取方法。该方法首先采用Gabor小波提取出纹理特征,其次结合K-means聚类分析方法,对PCA降维后的纹理特征向量提取出阔叶林区,最后基于形态学理论降低影像噪声,并利用前景后景标记的分水岭方法进行单木树冠提取。经过与人工解译的树冠信息结果对比发现,在郁闭度较高的阔叶林区,该自动化方法提取树冠精度较高,分割准确率Ad为79.59%,F测度达到了79.00%能有效提供精确的单木树冠信息,为林业经济调查技术的发展具有一定的实践意义。
- 单位