摘要
针对短期电力负荷预测目前存在的难点与问题,提出了一种基于麻雀搜索优化的注意力门控循环单元预测方法。首先,应用注意力机制对输入序列进行权重分配;然后,输入门控循环单元组合网络对内部特征进行学习,并输出预测时间负荷值;最后,使用麻雀搜索算法对网络超参数进行组合优化,以验证集损失最小为目标函数获取最优化网络结构超参数。该方法实现了原始输入序列结构权重分配与组合网络超参数的最优化。算例分析表明,所提方法比传统预测模型精确度更高。
-
单位云南电网有限责任公司电力科学研究院; 昆明理工大学