摘要
针对大型风力发电机变桨控制受外部干扰和参数变化大、造成输出功率不稳定的问题,提出一种智能控制的算法,在RBF神经网络基础上增加模糊算法,利用模糊RBF神经网络实时在线调整PID参数。当实际风速偏离额定风速时,科学调整风机桨距角,使风机所获得的空气动力转矩发生变化,从而在额定功率附近保持风力机输出功率的相对稳定。据此搭建了风电机组各模块的数学模型,并在MATLAB/Simulink上搭建了仿真模块。实验结果表明:基于上述的方法控制效果相比于传统PID控制和常规RBF神经网络PID控制,响应更快、风能利用系数性能超调更小、功率输出更稳定,更有利于风力发电机组的系统稳定性。
-
单位江西理工大学; 中国科学院; 自动化学院