摘要
针对目前用于遥感图像云检测的神经网络模型存在光谱信息未能充分利用而导致的细节信息易损失、碎云漏检率大、计算复杂等不足,提出一种新型且轻量的网络,称为勺型网络(spoon-net, S-Net),应用于Landsat遥感图像的云检测。S-Net分为2个阶段,第1阶段,使用1×1的卷积核提取图像光谱特征,避免图像细节被模糊;第2阶段,使用encoder-decoder框架提取图像空间特征,并引入分组卷积,对第1阶段提取的每一层光谱通道单独进行卷积,保持光谱特征并减少模型参数。模型在Landsat8 biome数据训练测试并评估,结果表明模型在内存与时间上具有较大优势,并达到95%的准确率。
-
单位中国科学院; 中国科学院大学