摘要
Marching Cubes是医学体数据可视化的经典算法,但生产的网格质量差、算法执行速度慢成为阻碍其用于数值分析的两个主要缺点。文中提出一种基于硬件加速的Marching Cubes改进算法。该算法采用统一设备架构(CUDA)充分发挥Marching Cubes算法分而治之的优点,利用CUDA的可编程性并行分类体数据,加快了活跃体素和活跃边的提取;同时,该改进算法将得到的活跃边按照中点投影方式进行偏移,从而达到了改善网格质量的目的。最后通过实验表明,该算法可以保证在阈值未知的情况下,进行交互式的高质量网格建模。
- 单位