本文研究了在每个对象只有一幅图像可用的情况下进行人脸识别。由于姿态变化所造成的自身遮掩和旋转的非线性,人脸识别的准确率将大大降低,广泛采用的主分量分析方法性能也将随之下降。通过分析用主分量分析生成的正面特征空间中的权值变化,我们发现给这些权值矢量加上系数,系统性能将大大提高。从而,我们提出了多姿态主分量分析方法。在UMIST人脸库上的实验结果表明我们的方法优于著名的特征脸方法,它大大的提高了识别率。