摘要
针对传统的基于多尺度变换方法使用的单一特征而忽略了曲线、边缘等互补特征的问题,提出了一种基于麦克劳林展开与高斯同态滤波增强相结合的脉冲耦合神经网络(PCNN)医学图像融合方法.首先通过麦克劳林展开将源图像分解为偏差分量和多级能量分量(以下分解到三级),再将三级能量分量进行高斯同态滤波增强获得增强的三级能量分量子图;然后使用自适应PCNN模型分别对偏差分量和多级能量分量进行融合,利用加权平均规则融合二级能量分量融合子图和增强的三级能量分量融合子图得到增强的能量分量融合图;最后反向麦克劳林展开获得融合图像.实验结果显示,该方法在图像清晰度、细节信息保留程度以及图像融合质量等方面与其他方法相比较更具有普适性.
- 单位