摘要

随着电力系统规模的日益增大,电网面临不确定性故障的危险,会影响人们的日常生活,甚至可导致重大安全事故。因此,提前预测电力设施的运行状态并作出巡视修检决策非常重要。但常用的决策方法(如支持向量机(SVM)模型等)在这些实际应用场景中存在准确度不高、召回率低的问题。针对这一问题,提出一种结合长短期记忆(LSTM)、卷积神经网络(CNN)和注意力(Attention)机制的电力设施非周期巡视决策方法 LSTM-CNN-Attention,将数据经过极限梯度提升(XGBoost)特征选择和归一化处理后输入该决策模型,利用注意力机制对经过LSTM和CNN层提取的包含时间和空间的信息作加权处理,区分信息的重要程度,以在输出预测结果时能够更关注那些对结果影响最大的信息,确保在预测过程中更重要的信息能够得到更大的关注和贡献,以提高预测结果的准确性和可靠性。通过在电力设施运行数据集上进行对比实验,验证了LSTM-CNN-Attention的准确率、精确率、召回率和F1-score性能评估指标优于CNN-LSTM、XGBoost、CNN、随机森林、SVM和逻辑回归模型的学习算法。