摘要
针对训练集和测试集均存在光照、遮挡、噪声污染等情况下的人脸识别问题,提出一种基于低秩矩阵恢复的群稀疏表示人脸识别方法。将人脸图像由空域变换到对数域,通过低秩矩阵恢复算法恢复每子类训练样本,增强恢复数据的鉴别力;学习恢复低秩成分与原始训练数据之间的低秩映射关系矩阵,利用该矩阵将测试样本映射到其潜在的子空间下,移除测试样本中存在的误差;计算恢复的测试样本在恢复的训练集上的群稀疏表示,结合重构残差与类关联系数进行识别。在CMU PIE、Extended Yale B和AR数据库上的实验结果表明,该方法具有较高的识别率和较强的鲁棒性。
-
单位通信与信息工程学院; 重庆邮电大学