摘要

针对传统海表盐度遥感反演精度不高、影响因素较少等问题,本文基于SMAP(Soil Moisture Active Passive)卫星L2C(Level 2 C)数据、Argo(Array for Real-time Geostrophic Oceanography)数据和其他辅助数据,以太平洋部分海域(160°E~120°W,0°~30°N)为研究区域,综合考虑海面粗糙度以及白冠覆盖率等参量,利用径向基神经网络建立RBF亮温增量模型,并对平静海面亮温进行修正,然后基于Meissner-Wentz介电常数模型得到反演后的盐度值。验证结果表明:模型预测盐度和SMAP卫星盐度相对于Argo实测盐度的均方根误差分别为0.4和0.5,平均绝对误差分别为0.3和0.4。实验证明,利用RBF神经网络建立的亮温增量模型可以提高海表盐度反演的精度,对海表盐度反演具有实用意义。