摘要
针对社交网络中近邻位置查询时个人位置隐私泄漏的问题,采用地理不可区分性机制对位置数据添加随机噪声,提出了一种隐私预算分配方法。首先,对空间区域进行网格化分割,根据用户在不同区域的位置访问量来个性化分配隐私预算;然后,为了解决在扰动位置数据集中近邻查询命中率偏低的问题,提出了一种组合增量近邻查询(CINQ)算法,以扩大需求空间的检索范围,并利用组合查询过滤冗余数据。在仿真实验中,与SpaceTwist算法相比,CINQ算法的查询命中率提高了13.7个百分点。实验结果表明,CINQ算法有效解决了因为查询目标的位置扰动所带来的查询命中率偏低问题,适用于社交网络应用中扰动位置的近邻查询。
- 单位