摘要
随着深度学习技术的发展,文字识别与自然语言处理近年来受到广泛关注.结合文字识别与自然语言处理技术解决传统方法无法处理的问题,成为企业提高自身竞争力的重要利器.自然场景文字识别分为文字的检测和识别,两者缺一不可.本研究针对传统算法存在准确率低、识别速度慢及模型不轻量化等问题,提出一种基于DBNet的检测算法,结合CRNN的识别算法,辅以CTC loss来实现端到端的企业实体识别.此外,增加命名实体识别模块,提升了识别的准确度.在实验阶段,选择准确率(Precision, P)和识别速率(False Alarm, FA)作为评价指标,实验结果表明,本算法在数据集上,有较高的准确率和较快的识别速率,验证了所提出的改进方法并具有较好的效果.
- 单位