摘要
为规避轮毂电机故障恶化诱发电动汽车运行安全隐患,提出一种基于K-means聚类算法的改进人工碳氢网络(K-means based Artificial Hydrocarbon Networks, K-AHNs)的轮毂电机状态识别新方法,主要通过K-means聚类算法思想改进人工碳氢网络(Artificial Hydrocarbon Networks, AHNs)碳氢分子区间的更新方式,优化多种状态识别模型,进而达到提高识别精度、降低训练时间的目的。基于轮毂电机内侧滚动轴承内圈、外圈和滚动体3种不同故障状态在4种负载和7种运行状态下的实验数据验证结果表明,K-AHNs法在多种运行工况下能够精准、高效地识别轮毂电机运行状态,状态识别率均大于87%,训练时间均低于19 s。比较传统的AHNs法,K-AHNs法的平均状态识别率提高了14.49%,平均训练时间缩短了7.36倍,具有较高的可靠性和实用性,较好地解决现有的电机故障诊断方法识别精度低、模型训练时间长的问题。
- 单位