摘要

交通速度预测在智能交通系统中起着重要的作用,准确、快速的交通速度预测有利于及时掌握城市道路交通状况,能够有效实行交通诱导。针对交通速度具有极强的周期性,在工作日和非工作日之间存在较大差异,导致预测精度不高的问题,分别选取公开的工作日和非工作日交通速度数据,构建基于长短期记忆神经网络的城市交通速度预测模型。实验验证采用广州市20条路段的交通数据,结果表明,区分工作日和非工作日的平均绝对百分比误差、平均绝对误差和均方根误差的平均值比不区分均要小,说明区分工作日和非工作日可以有效地提高交通速度的预测精度。