摘要
针对传统ResNet网络存在丢失图像有用信息以及参数冗余等问题,论文提出一种改进ResNet的A-ResNet模型。引入有shortcut连接的残差注意力模块,增强对目标对象的关注度;引入Dropout层,防止过拟合现象,提升识别精度;调整网络架构,加快训练收敛速度及提高识别精度。实验结果表明,A-ResNet模型相比传统ResNet网络实现约2%的top-1精度的提高。
- 单位
针对传统ResNet网络存在丢失图像有用信息以及参数冗余等问题,论文提出一种改进ResNet的A-ResNet模型。引入有shortcut连接的残差注意力模块,增强对目标对象的关注度;引入Dropout层,防止过拟合现象,提升识别精度;调整网络架构,加快训练收敛速度及提高识别精度。实验结果表明,A-ResNet模型相比传统ResNet网络实现约2%的top-1精度的提高。