为了提高基于图像的三维重建的重建效果,基于深度学习的方法已经成为近年来研究的重点。针对目前存在的方法中特征提取效果差、重建细节缺失且计算量巨大的问题,提出一种改进卷积神经网络的单个物体重建方法。通过加入改进的Inception-resnet模块来提升网络的特征提取能力,采用多种网络结构提取多特征,通过多特征依次输入3D-LSTM模块中以增强单幅图像的重建效果。实验结果表明,该方法不仅能够得到更好的重建效果,重建出更多的细节,同时在训练中花费更少的时间。