摘要

针对现有企业非法集资风险识别准确率低、效率低等问题,提出了一种基于混合神经网络的预测模型。该模型构建基于预训练语言模型和门限循环神经网络(GRU)的风险等级预测网络产生风险等级和风险候选特征向量,并结合双向门限循环神经网络(BiGRU)和注意力(Attention)机制构建风险特征知识嵌入网络,最后将融合特征向量输入到分类器来实现非法集资预测。实验结果表明:该模型相较于其他基线模型能够取得更好的风险预测效果。