摘要
针对多尺度散布熵(MDE)在粗粒化过程中易发生信息丢失、产生虚假信息,难以全面提取轴承故障信息的问题,提出了基于改进的精细复合多尺度归一化散布熵(IRCMNDE)和最近邻凸包分类(NNCHC)的滚动轴承故障诊断方法。引入精细复合多尺度散布熵(RCMDE),将其粗粒化过程中平均值替换为最大值来表示数据段信息,以克服传统粗粒化过程的不足并突出故障特征。通过归一化操作减弱熵值计算时不同参数选择导致的熵值波动幅度,得到IRCMNDE。将IRCMNDE作为故障特征,使用NNCHC分类器对故障特征进行分类。经实验验证,该方法可达到98.98%的故障识别准确率,相比基于MDE(故障识别准确率为95.99%)和RCMDE(故障识别准确率为97.60%)的方法,能够更准确地提取滚动轴承的故障特征信息,提高承故障分类的准确性。
-
单位自动化学院; 昆明理工大学