摘要

为提高特征检测的可靠性与实时性,提出了一种快速自适应鲁棒性尺度不变的特征检测子(fast adaptive robust invariant scalable feature detector,FARISFD)。首先提出尺度空间组数自适应选取方法改善了检测子针对不同图像的鲁棒性,然后提出基于过渡层的尺度空间构建方法加强了尺度空间的鲁棒性,最后利用基于加速段的特征检测子(features from accelerated segment test,FAST)计算特征分数,并通过简化传统亚像素级矫正方法,提高了特征分数的计算与亚像素级矫正速度。通过复现率与耗时实验进行了验证,与5种使用广泛的检测子对比结果表明,FARISFD的鲁棒性与速度较高。

  • 单位
    中国人民解放军陆军工程大学