摘要

Transformer是一种基于自注意力机制的深度神经网络。近几年,基于Transformer的模型已成为计算机视觉领域的热门研究方向,其结构也在不断改进和扩展,比如局部注意力机制、金字塔结构等。通过对基于Transformer结构改进的视觉模型,分别从性能优化和结构改进两个方面进行综述和总结;也对比分析了Transformer和CNN各自结构的优缺点,并介绍了一种新型的CNN+Transformer的混合结构;最后,对Transformer在计算机视觉上的发展进行总结和展望。