摘要
由于现有信息资源利用不充分,实际复杂工况下滚动轴承故障诊断特征提取不精,文中提出一种基于全矢自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)的滚动轴承故障诊断方法。CEEMDAN不仅保证了EEMD分解的效果,而且很好地抑制了重构误差。其做法是在EMD方法的基础上有次数地加入自适应白噪声IMF分量。根据相关系数最大原则选取CEEMDAN分解得到的水平通道和垂直通道前5阶IMF分量进行数据重构,再对重构数据用全矢谱技术融合,得到基于CEEMDAN的矢量谱,最后对融合后的信号做包络分析处理求其包络谱,提取故障特征,并与EEMD包络谱对比。试验结果表明,所提方法能够更全方位、更准确地提取故障特征。
- 单位