针对传统模糊K-means算法易于采用局部最优解的缺陷,设计了一种基于大数据K-means聚类算法的优化算法。首先针对移动大数据的分析处理方法展开研究,再提出了通过欧氏距离来选出密度最大若干个初始点的改进方法,使数据的聚类的有效性及效率性有了很大的提高。实验仿真表明:该算法具有较好的聚类效果,提高了聚类的速度和准确性。