摘要

提出了一种广义意见动态模型(GODM),此模型可以通过动态计算每个人的表达意见来解决社交信任网络中的意见最大化问题。在模型中提出了一个新的、合理的、可解释的自信指数αi,α i由个人的社会地位与其周围人的评价共同决定。并且利用对角占优理论,得到模型达到纳什均衡状态时的最优解析解。设计了一种具有l1形式的交替方向乘子法来最大化现有的总体意见。进行了一系列实验,实验结果表明,此方法在4个数据集上都有较好的结果。在4个数据集上,解决内部意见问题的平均效益分别提升了66.4%,88.7%,47.8%和34.1%。实验结果充分验证了所提模型的优越性。

全文