摘要

构建一个以U-Net为基础的模型,通过引入注意力机制与纹理结构分层相融合的图像修复方法,在生成对抗网络模型基础上,引入通道注意力并结合多尺度卷积模块,将图像下采样提取特征分为纹理特征与结构特征,采用改进的Res2Net残差块并重构损失函数.实验结果表明,修复后图像的纹理和结构更统一,修复图像与原始图像在高级语义上更加接近.

全文