摘要

针对大多数现有主流兴趣点(POI)推荐算法忽略了融合用户复杂动态偏好和一般静态偏好建模的复杂性问题,提出一个融合复杂动态用户偏好和一般静态用户偏好的POI推荐算法CLSR。首先,在复杂动态偏好建模过程中,基于用户的签到行为及其中的跳过行为设计一个混合神经网络,实现用户的复杂动态兴趣的建模;其次,在一般静态偏好建模过程中,利用高阶注意力网络学习用户与POI之间复杂的交互关系;然后,利用多层神经网络进一步学习和表示上述动态偏好和静态偏好;最后,基于统一的POI推荐框架对偏好进行整合。在真实数据集上的实验结果表明,与个性化马尔可夫链和用户位置受限的推荐方法 FPMC-LR、基于个性化排名度量嵌入的推荐方法 PRME、基于排名的地理分解兴趣点推荐方法 Rank-GeoFM和基于时间和多级上下文注意力机制的下一个兴趣点推荐方法 TMCA相比,CLSR的性能有了较大的提高,该算法的准确率、召回率和归一化折损累计增益(nDCG)和对比方法中较优的TMCA相比,在Foursquare数据集上分别提高了5.8%、5.1%和7.2%,在Gowalla数据集上分别提高了7.3%、10.2%和6.3%,可以有效地改善POI推荐的结果。

  • 单位
    中国船舶重工集团公司