摘要
推荐系统的作用是为用户提供个性化的建议或服务,从而帮助用户在大量数据中快速找到感兴趣的项目。在现有的推荐算法中,基于模型的协同过滤推荐算法是推荐系统中一种重要且被广泛使用的方法,它可以解决推荐系统中的冷启动和数据稀疏等部分问题。文中对传统的协同过滤算法进行了改进,将组合了信任信息和图聚类算法的协同过滤技术应用在推荐系统。该方法首先将用户/项目信息表示为图形,然后在图形上使用近似最密集子图查找算法来找到初始集群中心,接着应用迭代方法来更新集群中心直到合并集群。最后将找到的集群作为邻居,对未知项目预测评级并向活跃的用户推荐前N项。在不同的数据集中,对比不同聚类方法的评估结果来表明所改进的方法优于其它推荐方法。
-
单位武汉邮电科学研究院