摘要

针对现有的智能诊断方法训练时间长、识别率不高的问题,提出一种基于总体平均经验模态分解(EEMD)和堆叠稀疏自编码(SSAE)的滚动轴承故障诊断方法。首先,采用EEMD对滚动轴承振动信号进行分解,得到若干个固有模态函数和一个趋势项之和;其次,计算每个固有模态函数分量的峭度,选取峭度值较大的分量作为敏感故障特征分量;第三,提取敏感故障特征分量的时域及频域特征,构建新的数据集,作为诊断网络的输入。最后,将构建的新数据集作为堆叠稀疏自编码网络的输入,进行训练和测试。与现有方法的对比结果表明,所提方法在准确性、计算耗时方面更具优势。